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Continuous time dynamic programing

The problem is to maximize the integral of some objective function over a
specific time horizon. The objective is a function of some control variable
whose stream of optimal levels is chosen by the planner and a state
variable that follows a diffusion process.

max
ct

Et [

∫ T

t

U(cs , xs)ds]

subject to
dx = a(x , c)dt + b(x , c)dz

Can define the indirect utility (value) function as:

J(xt , t) = max
x

Et [

∫ T

t

U(cs , xs)ds]

= max
c

Et [

∫ t+∆t

t

U(cs , xs)ds +

∫ T

t+∆t

U(cs , xs)ds]
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Continuous time dynamic programing

Distributing the max operator inside the brackets,

J(xt , t) = max
c

Et [

∫ t+∆t

t

U(cs , xs)ds + J(xt+∆t , t + ∆t)]

Using a Taylor series expansion and employing diffusion processes
properties, one can show that the problem reduces to:

0 = max
c

[U(ct , xt) + Jt + Jxa +
1

2
Jxxb

2]

= max
c

[U(ct , xt) + L[J]]

For any dynamic programing problem, just need to identify functions and
relationships correctly and apply the above result.
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Continuous time consumption-portfolio problem - Merton (1969)

Assumptions

There are n risky assets that pay no cash, each with a instantaneous
return of:

dSi

Si
= µi (x , t)dt + σi (x , t)dzi , i = 1, ..., n

and σidziσjdzj = σijdt

Risk free rate is given by r(x , t) and consumption per unit time is ct .

There are k state variables summarized in vector x .

Given variable µi ’s and σi ’s, the consumer faces changing investment
opportunities.

State variables can themselves follow diffusion processes:

dxi = ai (x , t)dt + bi (x , t)dζi

with bidζicjdζj = bijdt and σidzibjdζj = φijdt.
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Continuous time consumption-portfolio problem

Problem

The consumer’s problem is given by:

max
Cs ,{ωi,s}

Et [

∫ T

t

U(Cs , s)ds + B(WT ,T )]

subject to

dW = [
n∑

i=1

ωi
dSi

Si
+ (1−

n∑
i=1

ωi )r ]W − Cdt

=
n∑

i=1

ωi (µi − r)Wdt + (rW − C)dt +
n∑

i=1

ωiWσidzi

In which both utility and bequest functions are strictly increasing and
concave in the levle of consumption.
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Continuous time consumption-portfolio problem

Solving the problem

Define the indirect utility as:

J(W , x , t) = max
Cs ,{ωi,s}

Et [

∫ T

t

U(Cs , s)ds + B(WT ,T )]

The Bellman equation will look like:

0 = max
Ct ,{ωi,t}

[U(Ct , t) +
∂J

∂t
+ [

n∑
i=1

ωi (µi − r)W + (rW − C)]
∂J

∂W

+
n∑

i=1

ai
∂J

∂xi
+

1

2

n∑
i=1

n∑
j=1

σijωiωjW
2 ∂

2J

∂W 2

+
1

2

k∑
i=1

k∑
j=1

bij
∂2J

∂xi∂xj
+

k∑
j=1

n∑
i=1

Wωiφij
∂2J

∂W∂xj
]
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Continuous time consumption-portfolio problem

Solving the problem

FOC’s:
∂U(C∗, t)

∂C
=
∂J(W , x , t)

∂W

0 =
∂J

∂W
(µi − r)W +

∂2J

∂W 2

k∑
j=1

σijω
∗
j W

2 +
∂2J

∂xi∂W

k∑
j=1

Wφij

Defining C∗ = G(JW , t) ⇒ C∗ = G(JW , t).

Letting Ω = [σij ] and Ω−1 ≡ [νij ],

ω∗i = − JW
JWWW

n∑
j=1

νij(µj − r)−
k∑

m=1

n∑
j=1

JWxm

JWWW
νijφij

Substituting back the optimal demands into Bellman equation, the PDE
whose solution is the J function results.
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Continuous time consumption-portfolio problem

Constant investment opportunities

Constant investment opportunities is equivalent to µi s and σi s being
constant.

This leads to φij = 0 and the second term in the optimal portfolio choice
condition vanishes.

ω∗i = − JW
JWWW

n∑
j=1

νij(µi − r), i = 1, ..., n

Plugging back into the Bellman equation the PDE for the J function is
found as:

0 = U(G , t) + Jt + JW (rW − G)− J2
W

2JWW

n∑
i=1

n∑
j=1

νij(µi − r)(µj − r)

This doesn’t have necessarily an easy/analytic solution.

Yashar Heydari University of Illinois

Basics of Asset Pricing Theory Continuous time consumption-portfolio choice



Continuous time consumption-portfolio problem

Constant investment opportunities

According to the results the proportion of wealth in risky asset i to risky
asset j is constant:

ω∗i
ω∗j

=

∑n
j=1 νij(µij − r)∑n
j=1 νkj(µj − r)

The proportion of risky asset k to all risky assets is:

δk =
ω∗k∑n
i=1 ω

∗
i

=

∑n
j=1 νkj(µj − r)∑n

i=1

∑n
j=1 νij(µj − r)

Regardless of the form of the utility function, the individual holds a risk
free asset and a portfolio which contains n risky assets in constant
proportions.

Investing in two “mutual funds” would satisfy investment needs of the
individual.
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Continuous time consumption-portfolio problem - Merton (1969)

Constant investment opportunities

One can think of the portfolio decision in a constant investment
opportunities setting to be investing in a risk-free asset and a market
portfolio which possesses the following parameters:

µ ≡
n∑

i=1

δiµi

σ2 ≡
n∑

i=1

n∑
j=1

δiδjσij

This is an equivalence condition which is derived due to the fact that
choice of risky asset weights are such that relative weights are constant.
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Continuous time consumption-portfolio problem

The Martingale approach

Given that necessary conditions for the market being complete one can
restate the problem based on a martingale approach.

Recall from previous analysis regarding derivatives pricing that martingales
exist if the market is frictionless - no-arbitrage condition holds.

The ultimate and main result that assure market completeness in to prove
that there exists a unique market price of risk.

Through the martingale approach, quantities are discounted to present
values using the stochastic discount factor.
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Continuous time consumption-portfolio problem - Merton (1969)

The Martingale approach

The budget constraint can be rewritten as:

Wt = Et [

∫ T

t

MT

Mt
Csds +

MT

Mt
Wt ]

Can use the Lagrange multiplier to restate the optimization problem.

max
Cs ,WT

Et [

∫ T

t

U(Cs , s)ds+B(WT ,T )]+λ(MtWt−Et [

∫ T

t

MsCsds+MTWT ])

FOC’s:
∂U(Cs , s)

∂Cs
= λMs , ∀s ∈ [t,T ]

∂B(WT ,T )

∂WT
= λMT

Yashar Heydari University of Illinois

Basics of Asset Pricing Theory Continuous time consumption-portfolio choice



Continuous time consumption-portfolio problem - Merton (1969)

ICAPM

Can use the FOC’s to find µi − r for given asset.

The use the results:
ω∗i
ω∗j

=

∑n
j=1 νij(µij − r)∑n
j=1 νkj(µk j − r)

is constant.
And

δk =
ω∗k∑n
i=1 ω

∗
i

=

∑n
j=1 νkj(µj − r)∑n

i=1

∑n
j=1 νij(µj − r)

Also we know that there exist a portfolio delivering:

µ ≡
n∑

i=1

δiµi

σ2 ≡
n∑

i=1

n∑
j=1

δiδjσij

Yashar Heydari University of Illinois

Basics of Asset Pricing Theory Continuous time consumption-portfolio choice



Continuous time consumption-portfolio problem - Merton (1969)

ICAPM

Assume the portfolio generating expected return of µ is the market
portfolio - µ = µm

Use FOC’s to derive µi − r for a given risky asset.

Find a weighted average of µi − r according to δi which was computed
earlier. This will be the market portfolio.

With a few simple algebraic steps you can show that:

(µi − r) = βi (µm − i)

where,
βi =

σim

σ2
m

This is what we’ve seen in discrete-time modeling.
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Alternative preferences - Time-Inseparable Utility

Internal habit

The consumer maximizes:

E0[

∫ ∞
0

e−ρtu(Ĉt )dt ]

with Ĉt = Ct − bxt , and

xt = e−atx0 +

∫ t

0

e−a(t−s)Csds

Consumer gets utility from consumption in excess of the habit level.

Can have consumers who gain the same utility even though they
consumption levels are different
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Alternative preferences - Time-Inseparable Utility

External habit

The consumer maximizes:

E0[
∞∑
t=0

δt
(Ct − Xt)

γ − 1

γ
]

Consumer compares her wellbeing to the average that she observes in the
economy.

Compare rich and poor countries
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