Basics of Asset Pricing Theory
 \{Derivatives pricing - Martingales and Pricing KERNELS

Yashar
University of Illinois

July 1, 2012

Motivation

- In pricing contingent claims, it is common not to have a simple and traceable equilibrium PDE. \Rightarrow Not easy to find the functional form of the price.

■ Numerical methods? \Rightarrow Not accurate, less interesting from theorists' point of view.

- What else?
- It can be shown that under the no-arbitrage condition, two alternative approaches could help:

1 Can use the martingale approach - namely the contingent claim price takes the form of a random walk.
2 There exists a pricing kernel - Back to preferences-based methods of asset pricing.

Arbitrage and Martingales

- The basic model focuses on pricing the same contingent claim as that of the B-S, except that the risk-free borrowing is not asserted as a possible factor in forming the hedge portfolio.
■ Hence the European call option is written on a stock whose pay-off follows $d S=\mu S d t+\sigma S d z$.
- Assuming the current option price takes the form $c(S, t)$, and applying Ito's lemma:

$$
\begin{gathered}
d c=\mu_{c} c d t+\sigma_{c} c d z \\
\mu_{c} c=c_{t}+\mu S c_{S}+\frac{1}{2} \sigma^{2} S^{2} c_{S S}
\end{gathered} \sigma_{c} c=\sigma S c_{S} .
$$

- Following the $B-S$ hedging argument the value of the hedge portfolio is given by $H=-c+c_{S} S$ (not a zero investment necessarily) with the instantaneous return of $d H=-d c+c_{S} d S=\left[c_{S} \mu S-\mu_{c} c\right] d t$.
- The no-arbitrage condition implies:

$$
d H=\left[c_{S} \mu S-\mu_{c} c\right] d t=r H d t=r\left[-c+c_{S} S\right] d t
$$

Arbitrage and Martingales

$$
\Rightarrow \quad c_{S} \mu S-\mu_{c} c=r\left[-c+c_{S} S\right]
$$

- Plug $\mu_{c} c=c_{t}+\mu S c_{S}+\frac{1}{2} \sigma^{2} S^{2} C_{S S}$ in the above condition to get the equilibrium PDE:

$$
\frac{1}{2} \sigma^{2} S^{2} c_{S S}+r S c_{S}-r c-c_{t}=0
$$

- Can view this in an alternative way, instead of going through solving the PDE.
- From $\sigma_{c} c=\sigma S C_{S}$, can get $C_{S}=\frac{\sigma_{c} c}{\sigma S}$.

■ Plugging this is the no-arbitrage condition and rearranging, we get:

$$
\frac{\mu-r}{\sigma}=\frac{\mu_{c}-r}{\sigma_{c}} \equiv \theta(t)
$$

which is a new no-arbitrage condition that requires a unique market price of risk $\theta(t)$.

Arbitrage and Martingales

■ Can rewrite the stochastic process for the contingent claim as：

$$
d c=d c=\mu_{c} c d t+\sigma_{c} c d z=\left[r c+\theta \sigma_{c} c\right] d t+\sigma_{c} c d z
$$

－Since $\theta(t)$ is not observable，need to take an approach different than the PDE approach．
－This approach consists a probability measure transformation．Define $d \hat{z}_{t}=d z_{t}+\theta(t) d t$ and substitute $d z_{t}$ in $d c$ to get：

$$
d c=r c d t+\sigma_{c} c d \hat{z}
$$

Risk premium is removed from expected return！
－The probability distribution of future values of c that are generated by $d \hat{z}$ is called the Q probability measure－The risk－neutral probability measure．
－It is in contrast to the probability distribution resulted from $d z$－The physical probability measure．

Arbitrage and Martingales

Money market deflator

- Let $B(t)$ be the value of investment in an instantaneous maturity risk-free asset with:

$$
\frac{d B}{B}=r(t) d t \Rightarrow B(T)=B(t) e^{\int_{t}^{T} r(u) d u}, \quad \forall t \leq T
$$

- Define $C(t) \equiv \frac{c(t)}{B(t)}$ is the deflated price process of the contingent claim and apply Ito's lemma to get:

$$
d C=\frac{1}{B} d c-\frac{c}{B^{2}} d B=\frac{r c}{B} d t+\frac{\sigma_{c} c}{B} d \hat{z}-r \frac{c}{B} d t=\sigma_{c} C d \hat{z}
$$

- As shown, the deflated price process of the contingent claim generated under the Q probability measure is a driftless process. Therefor the expected value of this price for a future date under the Q probability measure equals its current value. The process is a Martingale.

$$
C(t)=\hat{E}_{t}[C(T)] \quad \forall T \geq t
$$

Arbitrage and Martingales

Solution

- Can rewrite the martingale as:

$$
\frac{c(t)}{B(t)}=\hat{E}_{t}\left[c(T) \frac{1}{B(T)}\right]=\hat{E}_{t}\left[\frac{B(t)}{B(t) e^{\int_{t}^{T} r(u) d u}} c(T)\right]=\hat{E}_{t}\left[c(T) e^{-\int_{t}^{T} r(u) d u}\right]
$$

■ One can interpret this result as an alternative solution to the B-S equilibrium PDE.

- This says one can value a contingent claim without making any assumptions about the market price of risk if the price is discounted by the risk-free rate factor.

Arbitrage and Pricing Kernels

■ Recall that in the two-period/multi-period discrete-time models of consumption-portfolio choice, a risky asset would be priced according to:

$$
c(t)=E_{t}\left[m_{t, T} c(T)\right]=E_{t}\left[\frac{M_{T}}{M_{t}} c(T)\right], \quad M_{t}=U_{c}\left(C_{t}, t\right)
$$

■ Does this result hold in continuous time?

- The answer is "Yes" provided the market is dynamically complete.

■ To show this, one needs to prove there exists a pricing kernel which satisfies the martingale and no-arbitrage conditions imposed by Black-Scholes model simultaneously.

Arbitrage and Pricing Kernels

- Rewrite the pricing formula as:

$$
c(t) M_{t}=E_{t}\left[c(T) M_{T}\right]
$$

Looks like a martingale!

- Since M_{t} is the marginal utility, can assume that is follows a strictly positive diffusion process given by:

$$
d M=\mu_{m} d t+\sigma_{m} d z
$$

- Lets impose the no-arbitrage condition.

■ Define $c^{m} \equiv c M$ and apply Ito's lemma to get:

$$
d c^{m}=c d M+M d c+d M d c=\left[c \mu_{m}+M \mu_{c} c+\sigma_{c} c \sigma_{m}\right] d t+\left[c \sigma_{m}+M \sigma_{c}\right] d z
$$

- $c M$ being a martingale requires that its drift equals zero and therefore:

$$
\mu_{c}=-\frac{\mu_{m}}{M}-\frac{\sigma_{c} \sigma_{m}}{M}
$$

Arbitrage and Pricing Kernels

Solution

■ Applying the last result to the risk-free asset, must impose $\sigma_{c}=0$ and set $\mu_{c}=r(t)$.

$$
\Rightarrow r(t)=-\frac{\mu_{m}}{M}
$$

- Plugging this result back into the general form of μ_{c} :

$$
\mu_{c}=r(t)-\frac{\sigma_{c} \sigma_{m}}{M} \Rightarrow \frac{\mu_{c}-r}{\sigma_{c}}=-\frac{\sigma_{m}}{M}=\theta(t)
$$

■ Now, plugging for μ_{m} and σ_{m} in pricing kernel's diffusion process:

$$
\frac{d M}{M}=-r(t) d t-\theta(t) d z
$$

- Defining $m_{t}=\ln \left(M_{t}\right), \Rightarrow d m=-\left[r+\frac{1}{2} \theta^{2}\right] d t-\theta d z$ and hence,

$$
c(t)=E_{t}\left[c(T) \frac{M_{T}}{M_{t}}=E_{t}\left[c(T) e^{m_{T}-m_{t}}\right]=E_{t}\left[c(T) e^{-\int_{t}^{T}\left[r(u)+\frac{1}{2} \theta^{2}(u)\right] d u-\int_{t}^{T} \theta(u) d z}\right]\right.
$$

